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Summary

An earlier theory of the kinetics of pore gradient electrophoresis has been
extended and generalized to include diffusion broadening of peaks. If D and
Dy represent the diffusion coefficient of a molecular species in the gel and in
the absence of a gel, respectively, and M and M, the respective mobilities,
and these variable are assumed to satisfy

D/Dy = M/M, = exp(—z/L)

where z is distance, then an exact solution is obtained for the resulting
model. Further, an approximate theory has been developed for the deter-
mination of diffusion broadening when diffusion coefficient and mobility are
allowed to have any more general dependence on distance, provided that
diffusion is a small effect. A comparison of the exact and approximate
solutions shows that the error due to the approximation is usually smaller
than measurement error.

INTRODUCTION

Rodbard, Kapadia, and Chrambach have recently reviewed the
theory and presented some relevant experimental information on the
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use of pore gradient electrophoresis (PGE) for the separation of proteins
(1). The theory presented by these authors assumes that the material
to be analyzed travels through a gel gradient that is not necessarily
linear, but that diffusion can be neglected entirely. Some brief remarks
on diffusion in PGE were made in an appendix of Ref. 1, but a solution
to the underlying equations was not given, making it difficult to assess
quantitative effects of diffusion. Since resolution depends both on
position and peak dispersion (bandwidth), it is obviously desireable to
have either an exact solution to the underlying equations or some

‘approximate means of calculating bandwidth as is available for many

systems in chromatography (2) and ultracentrifugation (3).

The purpose of this paper is twofold: (a) to derive an exact expression
for the development of the molecular distribution in a linear gel gradient
under the assumption that the gradient affects the diffusion coefficient
exactly as it does the mobility, and (b) to present a modification of an
approximate theory previously developed for ultracentrifugation (4)
which can describe the effects of diffusion in a more general case.

EXACT ANALYSIS

In this section we present an exact analysis of a particular model for
mobility and diffusion dependence on gradient parameters. The results
are useful in two respects: The principal assumptions have been verified
for several systems (1), and the exact solution can also be used to check
the approximate theory developed in the next section. The assumptions
underlying the theory in both this section and the next are:

(1) The column can be regarded to be one dimensional and infinitely
long, with space parameter z.

(2) The gel concentration is a function of z only.

(3) The voltage gradient within the gel is constant and is unaffected
by gel concentration.

(4) Endosmosis, charge effects, and joule heating can be ignored.

(5) Mobility is a function of gel concentration only and is independent
of sample concentration.

(6) The diffusion coefficient is a function of gel concentration only
and is independent of sample concentration.

(7) The effects of pH or voltage discontinuities in the region of the
protein band due to the Donnan effeet can be ignored (5).
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The assumptions specific to the exact analysis in the next section are:

(8) Gel concentration is a linear function of z.

(9) The Ferguson relation applies, so that if M denotes mobility, M,
the free mobility, 7 the gel concentration, and K the retardation
coefficient, we can write M = Myexp (—KzT) (1).

(10) Thediffusion coefficient satisfies D/Dy = M/M, = exp (—KzT)
6,7.

If we denote protein concentration at position z at time ¢ by ¢(x,f)
and let v = MV and v, = M,V, be the entrained and free velocities,
respectively, where V is the voltage gradient, then Fick’s equation can
be written

dc 0 dc 0

%" o (D(x) 5) ~ [v(z)c] (1
where » = velocity = mobility X (voltage gradient). We assume that
the tube is initially loaded with a delta function pulse of concentration ¢,
so that the initial condition for Eq. (1) is

c(x,0) = cod(x) (2)

In what follows it will prove convenient to work with the normalized
concentration 8(z,t) which also obeys Eq. (1) but with the initial
condition

8(x,0) = 5(x) (3)

We first discuss the general theory in the absence of diffusion. Then
the solution to the resulting equation

a0 d

5=~ 5 @] @)

can be found by the method of characteristics (8). If we let * = H{(p)
be the solution to the equation

_/:ﬂ=p (5)

then the general solution can be written (8),

o) =g U = el (LG5 ) o] @
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where (z,0) is the initial normalized concentration. In order to appre-
ciate the significance of this formula, let us assume the conditions
appropriate to a linear gel gradient which, together with the Ferguson
relation, implies that

M(z) = Myexp (—z/L) Q)

where L is a parameter that can be determined as that position at which
the mobility falls to ¢! = 0.368 of its initial value. For this case

_ oo
H(p)—Lln(1+L) ®)
8(x,t) = (1 — %—te""')—l 6[L In (et — wt/L), 0] (9)

Thus for the initial condition in Eq. (3), i.e., an initial sharp pulse,
we find

0(xt) = (1 + let) S[L In (e*= — wet/L)] (10)
This represents a pulse located at
z*(t) = Lln (1 + %’t> (11)

as previously reported in Ref. 7, the pulse being modulated by a linear
function of time. A somewhat more interesting situation is one in which
the initial distribution is uniform,

6(x,0) = 1/L, for 0<z<L,

=0 otherwise (12)

that is to say, a finite initial concentration spread over the interval
{0,L,). This initial distribution becomes

¢ -1
0(z,t) = Lt (1 - %e"”‘) for z*() <z < z*(@)

=0 otherwise (13)



14: 29 25 January 2011

Downl oaded At:

DIFFUSION-DEPENDENT PEAK BROADENING 70

where

2*(@) =Lin (1 + %t)

z*(t) = Lln [exp (2—“) + %t] (14)

Thus the initial distribution has a width L;, and after time ¢ > 0 has

a width W (¢) given by
o (2) + 2
RAV 7

Wit =Lhh| —— (15)

vol
1+L .

Since

[ (z) -
7 | €Xp E -1
aw
dat

- - (16)
(+8) o= () + 2]

we see that the gel gradient causes the initial bandwidth to decrease
asymptotically to zero in the absence of diffusion. This result is to be
expected since the leading edge of the distribution travels more slowly
than the trailing edge. Furthermore the original flat profile is changed
to one that has a positive slope between z,*(¢) and z.*(¢).

Let us now consider the effect of diffusion. For the purpose of the
analysis we use a normalized space variable z = z/L, and the following
expression for mobility and diffusion coefficients

M = Myexp (~2), D = Doexp (—2) (17)

If we further define a dimensionless time variable 7 and dimensionless
diffusion coefficient e by

7= Vi/L = MVt/L. €= Do/(VoL) = Do/ (MVL)  (18)
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then Fick’s equation becomes

ad o ( o0 a .
or ‘az (e 6z) 9z (e70) (19)

and the initial condition given in Eq. (3) becomes
0(2,0) = 6(Lz2) (20)
For a representative case we might have

Dy = 2 X 1077 ¢cm?/sec
L=2cm

M, =1 X 1075 cm?/sec/volt
V = 5 volts/cm

in which case e = 2 X 1073 and the 7 corresponding to ¢ = 1 hr is 0.09.
The range of possible values of ¢ for realistic systems is approximately
5 X 10 < e < 5 X 10~ using polyacrylamide gels (1).

The solution to Eq. (19) under the initial condition of Eq. (3) is
shown in Appendix A to be

z /2
8(z,7) = — exp [‘i (1 + ‘) _1lfe J Tasoa (2" ) (21)
Ler 2 € €r er

in which Iq/9-1(y) is a Bessel function of the first kind, of imaginary
argument (9). Since ¢ is generally quite small, both the order and the
argument of the Bessel function are large, rendering a direct numerical
calculation of the Bessel function very difficult. However, an asymptotic
analysis given in full in Appendix B leads to a useful approximation
that is accurate to within terms of order e. If we define a parameter X by
A = (2/7) exp (2/2), then the expression for protein concentration is
approximated by

1 A 1
Lr(2xe)2 (A2 + 1)¥4 (1 4+ A2 — 1

2 1/2 2 1/2 __ z
Xexp[iﬁi__‘_lm(("_ﬂ__l)Jri(H'f)_ 1+e]
€ € A 2 € €r

0(z,7) =

(22)

Some typical curves of L#(z,r) calculated for ¢ = 0.001 are shown in
Fig. 1. The vertical dashed lines indicate the position of the peak pre-
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T=! =3 T=5 | |T=10
L8z,

Fig. 1. Curves of normalized concentration as a function of z, for ¢ = 0.001 and
several values of dimensionless r.

L8(2,5)

Fig. 2. Curves of normalized concentration as a function of ¢, the diffusion parameter,
for r = 5.
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dicted by the zero diffusion theory (e = 0). As can be observed from
the curves, there is no detectable shift due to diffusion. It can be demon-
strated analytically that the peak occurs at z* = In (1 + 7) correct to
terms proportional to e. This is the position predicted by the zero diffu-
sion theory. Figure 2 shows some typical bands for r = 5 for different
values of e. There is a slight asymmetry around the maximum.

In Figure 3 we have plotted two curves of the width at half height
Wy as a function of dimensionless time 7. The curves corresponding to
¢ = 0.001 and 0.005, respectively, both approach an asymptotic value.
This behavior is reasonable since the diffusion coefficient Dy exp (—2)
goes to zero as z increases. Even at very early times Wy;(r) is not

18
| erocs

wi/2
.08 h €+.001

o
=

Fia. 3. Curves for Wy(r), the peak width at half height, as a function of 7 for
e = 0.001 and 0.005.
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proportional to 72 as would be characteristic of peak spreading in
ordinary diffusion.

APPROXIMATE SOLUTION FOR ARBITRARY MOBILITY AND
DIFFUSION COEFFICIENT

Although the solution given in Eq. (21) is a useful one, it depends
critically on Assumption (10) that mobility and diffusion coefficient are
influenced in the same way by the gel gradient. It is useful, therefore, to
have an approximate solution that will allow us to examine the effect
of different spatial dependence of mobility and diffusion coeflicient. The
theory to follow is closely analogous to that developed by Weiss and
Dishon (4) for ultracentrifugation.

Let us begin by defining a dimensionless space variable z = z/L/,
where L’ can be chosen arbitrarily* but for convenience is chosen so that
zis a number of the order of unity. Let

D =Dof(z), v=u1g(2), r=ut/L, e=Dy/(nl’) (23)

analogous to the variables of the last section. Then Ficks’ equation
can be written

2210 - Lo (24

r

We assume that f(z) and g(z) are the order of unity and that e is small
(again, as in the last section, we assume ¢ < 10—?). As a matter of con-
venience, and without loss of generality, we define f(z) and g(z) so that
F(0) = g(0) = 1. We also change the space variable z so that the origin
in the new set of coordinates is at the position of the peak predicted by
the nondiffusion theory. This variable will be denoted by { and is

s dy
= = - 2
d '/o o) (25)

so that in the absence of diffusion the peak is specified by ¢ = 0. Let
the solution to Eq. (25) for z in terms of { and 7 be denoted by

* For example, I’ can be the length of the tube, as in Ref. 1.
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z = H(¢ + ) and define
SIHE+7n]1=FE + )
glHE + 7] =GE +7)

V() = 0(27)g(2)

In terms of these variables Eq. (24) becomes an equation for ¢ (¢,7), viz.

o _ F<r+f>a< v )]
o 6§[G(§+T) a\a + 1) (26)

This last equation is still exaet, no approximations having been made.
The approximation that we will make to reduce it to a simpler equation
is to assume that because of the smallness of ¢, only the region of { = 0
will make an important contribution. This amounts to replacing the
exact equation for ¥ (z,7) by an equation for an approximate ¥, (z,7) :

O _ F(T) AL
or Gz(‘r) il

That is to say we replace F(¢ + r) and G(¢ + 7) by F(r) and G(7),
respectively. It can be shown that the neglect of terms in dy/d¢ and ¢
in passing from Eq. (26) to Eq. (27) is of higher order in e than the
terms retained (4). If we define a new time variable A(7) by

(27)

_ _[FQw
A= A(r) = . ) du (28)
then Eq. (27) becomes
o _ U
aa o (29)

This equation is the classical diffusion equation, and is to be solved
subject to the initial condition

¥o(2,0) = 8(L'2)g(2) (30)

when the initial concentration is a delta function pulse. The solution
to Eq. (29) is (10)

, ’ (f"f,)z ’
Yo(5,4) = 7= A)W/ g[H(r)JﬁfLH(f)]eXP( 4eA )df

(31)
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in which the function H (z) has been defined above. But the integral is
easily evaluated because of the delta function, leading to the expression

1 2
W(58) = T e (— ;—A) (32)

Thus the normalized concentration can be approximated by

80(2,4) = (33)

1 2
L'g(z) (dmen) 2 P (“ 4eA) '
Although this expression includes a Gaussian term, the space variable
appearing in the exponent is ¢ rather than z so that the Gaussian term
is not necessarily symmetric in z,
In order to derive some of the consequences of Eq. (33), let us consider
the case characterized by

f(z) = exp (—az), g(2) = exp (—2) (34)
The preceding section was devoted to the case @ = 1. When a > 1 the

6 - €=005
— exact LE{(Z,5)

o 1 1 1 ]
17 1.8 1.9 20

¥4

Fic. 4. Comparison of the approximate Eq. (22) and exact Eq. (21) concentration
profiles for ¢ = 0.005 and r = 5.
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rate of diffusion decreases more quickly with the gel gradient than does
the mobility, while when « < 1 it decreases more slowly. For the choice
of space dependence in Eq. (34) we find, simply, that

H(y) =In(1+y) (35)

so that the functions F(r) and G(+) that appear in Eq. (28) are F(r) =
(1 4+ 7)==, G(r) = (1 + 7). But this leads to the following expression
for A(7):

AGr) = -3—_1_;[(1 Fra—1] %3

[

In(1+47) a=3
exp (2) —1—17 (36)

Il

$

The first problem to be considered is the accuracy of the approximation.
For this purpose we set « = 1 and compare the approximate L8(z,7)
with the more accurate values of L6(z,7) obtained from Eq. (22).
Figure 4 shows two curves for ¢ = 0.005 and = 5. There is a slight
shift in the peak between the two curves. Accurate caleulation shows
that the difference in z values between the two peaks is 0.0043, so that
if L = 2 em the actual peak shift would be less than 0.09 cm out of a
total distance traveled of 3.6 em. A more accurate theory can be de-
veloped to partially compensate for the shift but the resulting expres-
sions are quite unwieldly, and the error resulting from the use of Eq.
(33) is probably smaller than experimental error. The relative error
E(2,7), defined by

00(2,1‘)

E(zr) =1— 8(2,7)

(37)
for e = 0.005 and = = 5 is approximately 4.6 or less except in the tails
of the curve, where 6(z,7) is small in consequence of which relative
errors tend to be magnified.

In Fig. 5 we have plotted several curves of L6,(z,5) for the model
specified in Eq. (34). The curves given are for ¢ = 0.001 and « = 0.5,
1, 1.5, 2. The curves are slightly asymmetric, but the asymmetry does
not appear to depend very strongly on the parameter a. If z,,(v) denotes
the position of the maximum, then it is easy to show from Eq. (33) that

Zm(7) = In (3{1 + 7 + [(1 + 7)* + 8ea(r) I'}) (38)
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24 -

T

L6ofZ,5) 12

1.7 18 1.9

Fig. 5. A comparison of concentration profiles for the case characterized by
M = Myexp (—2), D = Dyexp(—az). The curves given are for e = 0.001
and r = §, for various values of a.

This depends only weakly on o through the term 8eA(r) appearing in
the square root Both the half-width and the maximum of concentration
have a significant dependence on «, although it would be very difficult to
distinguish experimentally between effects that depend on changes in «
and those that depend on changes in e.

In future investigations we shall examine the problem of optimizing
gel gradients for resolution of multicomponent systems. The mathe-
matieal apparatus developed in this paper allows us to consider diffusion
effects, at least in an approximate way. The errors in the mathematical
approximation appear to be no greater than experimental error so that
our theory should be useful in many similar applications in separation
systems.

APPENDIX A: SOLUTION TO THE FICK EQUATION (19)

In order to solve Eq. (19), let us first transform the independent and
dependent variables, 2z and 6(z,7) to y and ¢ (y,7) by

y=exp(2), 0(z7) =w(yr) (A-1)
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These variables transform Eq. (19) into

W _ a<a¢

ar  ‘ay\Yoy

d a9 d
)+<e—1>£=eya—2ﬁ+<2e—1>£ (A-2)

We next apply a separation of variables to this equation in the form

¥ (y,7) = T(r)U(y). These functions then satisfy

() _ o U (y) U'(y)
T(r) U(y) U(y)

Setting both sides of this equation equal to —)?, we find that

+ (2¢ - 1) (A-3)

T(r) = exp (—Nr),  U(y) = p20-9Jq . [m (y)'] (A1)

€
where J,(z) is a Bessel function of the first kind, of order r and argument
z (9). Hence a general solution to Eq. (A-2) can be written

o 1/2
vwr) = e [T 400 oo [ (L) [ (v an - a9
0
where A (\) is to be determined from the initial condition, i.e.,

@ y 1/2
¥(y,0) = yrr2la=ak / AN a-ose [2)\ (;) ] d\ (A-6)
)

This integral equation can be solved by making use of the fact that
if (10)

70 = [ M0070) ax (A7)

)
then f(\) can be written in terms of f*(p) as

0 = [ AT (p) do (A-8)

[}
Equation (A-6) can be put in the form of Eq. (A-7) by setting f(\) =
A(M\)/A. When the initial condition corresponds to an initial pulse at

— ]
z=2a,ie.,

8(2,0) = o[L(z — 2) ] (A-9)

V(y,0) = %a [L In (%)] (A-10)

then
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where y’ = exp (2’). Combining Egs. (A-6) through (A-10) we find that

—_ AN\e?' 2

Therefore the normalized concentration 6(z,7) can be written

2 1 -
0(z,r;2') = 7, °XP [z - ( e) z']
€ €

I\ 22 2/2
X [ )\J(l—e)/e( ( ;1/2)-](1_:)“(( )1/2> exp (—N\7) dA  (A-12)

in which we have explicitly displayed the dependence on 2’. But the
integral has been evaluated (9), with the result that

— e) (2—2) =% :eﬂ]

261/2(:+s’)

2 1
0(z,7;2") = T, &XP [z + 3 (1

X Ta—eye ( ) (A-13)

The result corresponding to a pulse at 2’ = 0 is 6(x,7;0). However, if

one wishes to discuss a more general initial distribution, say 6(z,0) =
p(2), then the eorresponding solution is

8(z,r) = / " o)) de’ (A-14)
0

in terms of the solution just derived.

APPENDIX B: ASYMPTOTIC ANALYSIS OF THE EXACT
SOLUTION IN EQ. (21)

We will reduce Eq. (21) by starting with the known properties of
the Bessel function (9)

d 1
Loajoa(n) = & Ly(n) + p Iye(n)

= Iy(n) {61—77 + din In Il/e("l)} (B-1)
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The Bessel function appearing in Eq. (21) is of the form Iy/e1(Me)
where A = (2/7) exp (2/2) will be considered to be of the order of unity.
But by 'a result of Montroll (11) we can write for small ¢,

) WHCL I
Iy (e) e et (B-2)
where p = (A? 4 1)2. The combination of Eqs. (B-1) and (B-2) leads

to the final result given in Eq. (22). One can show that the error terms
in Montroll’s expansion of the Bessel function are negligible.
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